专业定义
数据科学即是ata science,简称s,也叫做数据驱动科学,是一个交叉领域的学科,是用科学方法、处理过程和系统来提取知识或者从各种表格中提取结构性的或者非结构性的数据,类似于数据库中的知识开发。简单来说,数据科学就是是从数据中提取有用知识的一系列技能和技术。
三个不同颜色的圆圈分别代表三个不同的领域:
编程领域(语言知识、语言库、设计模式、体系结构等);
数学(代数、微积分等)和统计学领域;
数据领域﹙特定领域的知识:医疗、金融、工业等﹚。
由此可见,数据科学是结合了诸多领域中的理论和技术,包括编程、数学、数据三大模块的交叉融合,随着大数据(big ata)的发展,跟人工智能、机器学习、数据挖掘、深度学习等方面的结合越来越深入。
具体来说,s专业需要具备哪些方面的能力呢?
(1)计算机能力:一般来说,数据科学专业大多要求具备编程、计算机科学相关的专业背景。简单来说,就是对处理大数据所必需的haoop、mahout等大规模并行处理技术与机器学习相关的技能。
(2)数学、统计、数据挖掘的能力:除了数学、统计方面的知识之外,还需要具备使用spss、sas、r等主流统计分析软件的技能。
(3)数据可视化的能力:信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,开发web原型,使用外部api将图表、地图、ashboar等其他服务统一起来,从而使分析结果可视化,这是对于数据科学家来说十分重要的技能之一。
(4)知识复合型能力:顾名思义就是具备多个领域和行业的相关知识。
概念起源
数据科学(ata science)在20世纪60年代已被提出,只是当时并未获得学术界的注意和认可。1974年彼得·诺尔(peter naur)出版的《计算机方法的简明调研(concise survey of computer methos)》中将数据科学定义为:“处理数据的科学,一旦数据与其代表事物的关系被建立起来,将为其他领域与科学提供借鉴”。
此书前言中首次明确提出了数据科学(ata science)的概念:“数据科学是一门基于数据处理的科学”,并提到了数据科学与数据学(atalogy)的区别:
前者是解决数据(问题)的科学(the science of ealing with ata),而后者侧重于数据处理及其在教育领域中的应用(the science of ata an of ata processes an its place in eucation)。
学位介绍
master of science in ata science
数据科学硕士学位
master of science in engineering in ata science
数据科学工程硕士学位
ms in statistics:ata science
统计硕士学位:数据科学
master in interisciplinar ata science
跨学科数据科学硕士学位
master's in ata science
数据科学硕士学位
masters of science egree in health ata science
健康数据科学工硕士学位
m.s. in analytics, concentration in ata sciences
分析学硕士学位:数据科学分支
master's track in biostatistics an ata science
生物统计和数据科学学位
项目特点
以master项目为主,开设的ph项目极少。纵观s项目设置,提供ph学位的寥寥无几,单独开设数据科学专业相关的ph项目的学校有nyu, wpi, usc等,说明s项目本身是非常就业导向型的,而非学术导向的。有志于走学术科研道路,未来明确要读ph的学生,可以选择其他如统计方向读博。
学院分布
美国开设s专业的学校并不算多,一般会开设在计算机学院下,像南加州大学、马里兰大学和波士顿大学;
还有些大学会有自己的ate science institute,例如哥伦比亚大学、纽约大学和弗吉尼亚大学;
再就是在统计学院的下面,隶属于统计学下面的一个分支,例如斯坦福大学、康奈尔大学;
而西北大学、伊利诺伊香槟是在工程和应用科学学院下。
前提课程
学校项目
申请要求
(1)本科背景:数学/统计或cs为佳,物理,经济学等强调数学能力的专业次之,其他理工专业再次之。当然,如果不是相关专业,但有丰富的相关领域工作或科研经历,尤其是体现quantitative和programming能力的申请者也可以。对于一些特殊领域的s项目,比如公共政策、公共卫生等,有该领域知识和工作经验也很重要。
(2)数学先修课程:线性代数,概率论,数理统计,微积分等。每所学校都要求不尽相同,举例说明个别学校前提课程要求如下:
(3)cs先修课程:编程语言(python/r/java/c++),最看重python和r
(4)相关工作经验和实习经历会非常有帮助
(5)最好有相关的科研和学术经历,建议科研含金量高一些,课题周期长一些,有研究成果更好
整体上,美国数据科学专业的申请难度是比较高的,一方面s专业非常热门,另一方面不少项目开设在顶尖名校,申请难度高,而中间档次的学校相对较少。
注意个别学校的特殊要求:比如哈佛s项目强烈建议学生考gre math sub, 而且不接受ielts申请,只接受托福申请。
另外小编建议:除了gpa、托福、gre成绩的准备之外,对s专业的申请者来说,最推荐的实习是数据公司的数据岗,可以直接锻炼和体现自己的数据分析能力。此外,还可以选择一些统计、量化相关的实习或计算机相关的实习来培养和提升自己的定量分析能力和编程能力。
就业前景
根据ibm预测,到2020年所有美国数据科学类岗位数量将增加近万个,总数达到270万。而linkein在相关职业的调查中也发现,机器学习和数据科学工程师已经超过传统软件工程师,跃升为最高薪群体,年薪中位数高达$129,000。
所以,在大数据时代下,数据科学专业的就业前景是非常广阔的,很多行业都需要擅长挖掘和分析数据的人,例如it、互联网、游戏、通信、金融﹙券商、投行、基金、资产管理﹚、医药、咨询、零售行业等。
数据科学专业主要有三类职业方向:
● 数据科学家 ata scientist
● 机器学习工程师 machine learning engineer
● 数据分析员 ata analyst
s硕士项目的最大优势是在于课程设置,software system、machine learning、atabase、optimization、ecision science、statistics、business intelligence等所有涉及到的领域知识,硕士期间都会学一些。
所以s专业的毕业生,除了可以考虑商业分析方面的工作,还可以选择更偏向技术层面的工作,如数据科学家、机器学习工程师等,总体报酬也都是非常可观的。
而且随手搜索几家国内国外不同领域的数据科学家招聘广告(国内:阿里巴巴,百度1海外:ibm,道明银行, manulife保险),通过简单的归纳总结,我们不难发现其实岗位要求有很大的重叠部分:
学历要求硕士以上学历,博士优先。统计学、计算机科学、数学等相关专业。
工作经历:3年以上相关工作经验。
专业技能:熟练掌握hivesqlhaoop,熟悉大规模数据挖掘、机器学习、自然语言处理(nlp)分析语言:r, python, sas, java
其他要求:对数据敏感,具备良好的逻辑思维能力、沟通技巧、组织沟通能力、团队精神以及优秀的问题解决能力
今天为大家介绍了s专业的学校分布及申请要求,就业前景等情况,相信大家对s专业有了更全面的认识,后续会为大家带来更加干货的s硕士项目解析,希望大家能积极做好相关的申请规划和准备,如果有申请相关的问题,欢迎联系我们会安排s专业咨询师为您免费答疑解惑。
北京站
客服专线: 400-010-8000
服务专线: 400-010-8000
北京分公司:北京市朝阳区 建国门外大街永安东里甲3号院B座
友情链接 · 美国留学 | 英国留学 | 澳大利亚留学 | 加拿大留学 | 新西兰留学 | 日本留学 | 欧洲留学 | USA:A Study Destination
©2025金吉列出国留学咨询服务有限公司 版权所有 | 京ICP备05010035号 | 京公网安备11010502038474号 | 出版物经营许可:新出发京零字第朝190057号
信息提交成功!稍后将有专人与您联系。