

![]()
数据科学是一门交叉的学科,涉及到很多的领域包括统计学、数学、计算机、人工智能、机器学习、数据库、模式识别、可视化技术等多学科的知识。
关于数据科学项目的就业前景,全球最顶尖管理咨询公司麦肯锡(mckinsey)出具了一份详细的分析报告,大数据或者数据工作者的岗位需求将激增,其中大数据科学家的缺口在140000到190000之间,懂得如何利用大数据做决策的分析师和经理的岗位缺口则将达到1500000!其中对大数据处理需求最旺盛的行业包括:制药业、计算机软件、互联网、科研、it技术服务、生物技术。
事实上,大数据工作者可以施展拳脚的领域非常广泛,从国防部、互联网创业公司到金融机构,到处需要大数据项目来做创新驱动。数据分析或数据处理的岗位报酬也非常丰厚,在硅谷,入门级的数据科学家的收入已经是6位数美元了。
数据科学的三类职业方向:机器学习、数据分析和数据科学家。
1、机器学习工程师 machine learning engineer代表了技术含量较高的方向,工作内容主要是开发机器学习系统和用这些系统解决实际问题。一般需要ship prouction coe,做出来的是数据产品。
2、数据分析员 ata analyst工作内容俗称analytics (prouct analytics or business analytics),从数据中提取insight,估计投资回报比,为产品方向提建议,所用工具一般较基础,比如写sql query取数据、用r/python做简单的分析、用tableau/excel作图比较常见,能自己开发ashboar算是analyst里面技术强的,工作需要产生各种形式的报告;在统计层次上,懂基本t-test和线性回归即可。
3、数据科学家 ata scientist工作内容以高级建模为主,会针对复杂的问题来设计技术方案,比如uber叫车的eta、各种定价系统、airbnb和金融行业的frau etection、amazon物流管理、fb/linkein的社交网络或者ebay/airbnb/uber这样供需双方marketplace市场规模的实验。这些例子,听上去就不是写sql能解决的,也不是会写代码就能做出来的,都需要比较深的领域知识。
首先,本科是计算机科学cs的同学,是最符合申请条件的,因为大多数数据工作都是通过编程和数据库的相关手段进行的,同时学过统计、微积分、高级语言;例如哈佛大学对于mss的本科背景要求是:希望有微积分、线性代数,概率和统计等相关课程,能使用至少1种编程语言,例如python或r,了解计算机科学概念。
其次,本科背景是统计、数学或应用数学,且有一定编程基础的同学也可以申请,这都是很好的匹配专业。
最后,商科背景出身,但量化背景较强的商科专业,比如金工,但又希望能选择一个stem专业的同学,那s显然也是个非常好的选择。所以说,如果你有比较强的编程背景,又有比较好的数理基础,那你就很有竞争力;而纯商科背景的同学,如果没有强的量化背景,或者不懂编程,那建议还是数据科学s和商业分析ba混合申请,因为商业分析更加偏商科,开在商学院,对商科背景接纳程度大很多。
建议可以从科研方面加强,在大学期间最好找和量化相关的科研,如果实在没有,可以把相关的课程大作业拿来用。再退而求其次,也可以是计算机软件、数据库相关。如果没有科研经历,那将是极大的硬伤。此外,可以参加一些竞赛。竞赛的平台有很多,比如最近很火的kaggle,再如阿里的天池、soa、wi、数据嗨客等。
最后就是实习。实习最优选择应该是数据公司的数据岗,然而现实是这样的岗位由于太过重要,基本不会招实习生。所以建议找一些统计量化相关的或者计算机相关的实习。
如果您想了解更多留学资讯,欢迎到访公司面询!
北京站
客服专线: 400-010-8000
服务专线: 400-010-8000
北京分公司:北京市朝阳区 建国门外大街永安东里甲3号院B座
友情链接 · 美国留学 | 英国留学 | 澳大利亚留学 | 加拿大留学 | 新西兰留学 | 日本留学 | 欧洲留学 | USA:A Study Destination
©2025金吉列出国留学咨询服务有限公司 版权所有 | 京ICP备05010035号 | 京公网安备11010502038474号 | 出版物经营许可:新出发京零字第朝190057号
信息提交成功!稍后将有专人与您联系。