关闭

给自己的人生一个精彩的PlanB

意向国家及地区
获取验证码

我已阅读并同意 《隐私保护协议》

立即咨询专家
搜索
关注我们

留学官方微信

留学官方微博

400-010-8000

关于金吉列

留学

留学攻略 留学规划师 英国 美国 日本 加拿大
新西兰 澳大利亚 韩国 欧洲 亚洲

热门

留学产品 成功案例 院校排名
国际学校 精彩讲座 OSSD课程

申请

留学资料 语言提升
能力提升 签证准备

生活

留学安全 海外生活
实习就业 移民置业

工具栏

在线咨询

免费评估

费用计算

电话咨询

预约回电

顾问将于20分钟内回电

获取验证码

立即预约

我已阅读并同意《隐私保护协议》

到店咨询

免费领取留学邀请函
意向国家及地区
意向学段

请留下您的信息,我们将有专人与您联系

获取验证码
我已阅读并同意《隐私保护协议》

金吉列留学北京总部2

北京市朝阳区建国门外大街8号楼IFC国际财源中心B座15层

010-56836688

复制地址
到店咨询
0
0
首页 文章详情

统计学专业介绍及就业分析

胡春琴
2019-02-11 16:37:38
人浏览
0
0

美好向往,11实现 月度精彩...

了解详情

一站式留学评测 留学快人一步

了解详情

申请顶尖院校必备!教你如何提...

了解详情

第二外语选什么小语种吃香?

了解详情
美国的统计学申请是每年的最热门的专业之一,今天我们就来了解了解美国统计学

一、统计学的历史

统计方法可以追溯到很早,几乎在计数方法被发明的时候就有了原始的统计方法。到了16世纪,由于掷筛子赌博的兴盛(据说),学者们开始研究点数的频率,推算概率。这是早期的概率论。与此同时,政府为了增强控制力需要了解人口的特征。学者们发展了国情学,开始应用在人口统计上,比如男女性别。统计方法以概率论和国情学为两个方法论的源头,有了进一步的发展。

统计方法发展成为现代(数理)统计学,则是更近的事。17、18世纪的数学家继续发展了概率论,为现代统计学的奠定了部分理论基础。这其中就有数学家Thomas Bayes,他在18世纪中期提出条件概率的贝叶斯公式之后,他并不知道会给统计学带来多大的变化。

不得不提到的一个巨人是Karl Pearson。没错,就是Pearson test 那个Pearson,他还用姓氏首字母命名了一个折磨了统计系学生们一百年的变量—— p value。除此之外,他在统计理论的各个方面都有创新,最重要的是,他创建了世界上第一个统计系。他被公认为是现代(数理)统计学的创建者,也是生物统计的创建者(第一个生物统计学期刊就是他开的)。其实能者是无所不能的,他在业余还取得了大律师资格,还是一个坚定的基因改良主义者,要知道那才是1890年!

下面这幅图是Pearson的老婆为他的学术著作画的插页(1),主题就是:Chance of eath。从左到右意思是人从出生到老要经历不同的死亡风险。


Pearson之后,统计学就发展得非常快了:Spearman、Bonferroni、Neyman、Tukey、Cox、Box等等,基本上我们现在常用到的工具在1950s之前已经被发展的比较完备了。在这之后,比较大的变化是贝叶斯主义的兴盛。

在贝叶斯主义之前,使用prior knowlege是不规范的。你必须比较确切地知道某个随机事件发生的概率,才能用它来计算一些东西。怎么知道呢?你得去吭哧吭哧统计这个随机事件发生的频率,如果遇到一个很大的总体,那可能等你统计出来人家的paper早发了。贝叶斯主义者比较简单粗暴,根据一些prior knowlege,直接给概率赋值。看似武断,其实大大拓展了统计学的发展和应用空间。

二、 统计学的划分

统计学可以这样划分:理论统计学和应用统计学。

统计学的基础理论包括概率论、实分析、线性代数、asymptotic theory 等等数学内容。现在又包括了computational statistics。Computational statistics发展了bootstrapping、Monte Carlo simulation这些新的方法,在计算机被发明以前,这些技术是没法想象的,因为计算量太大了(不太确定computational statistics是否应该放在理论统计学里,不过这个不重要)。

应用统计学基本分为两大块:escriptive statistics 和 inferential statistics。前者是从总体中抓样本数据进行描述,后者是通过对于样本的分析对总体的特征进行推断。

这样直观的记忆比较好:前者:population ---> sample后者:sample ---> population

从population到sample,这个是以使用概率论为主。不过escriptive statistics本身并不发展新的理论知识。从sample到population,这个才是应用统计学的重要目的。因为统计学面对的是随机事件,而且是不完整的信息(sample),但要对完整的世界(population)做出估计。

统计学经过漫长的发展,尤其是计算机的大量应用,目前包括但不限于下面这些分支(或者交叉领域):

理论研究:概率论(比如stochastic process),计算统计理论(比如asymptotic theory,在CS系的computational theory下面)。

统计模型(在前人基础上继续发展各种regression moel,stratification,clustering,blocking,classification等等)、各种test的发展(比如time series,likelihoo ratio test, Wal test, permutation test 等等)。

计算统计方法的发展(比如Monte Carlo simulation,Bootstrap)

数据采集(census,survey和clinical trial等)

生物统计(比如longituinal analysis, spatial analysis)

ata mining

目前最火热的学科都是跟计算机结合比较紧密的。统计学领域也不例外,ata mining 和 machine learning都是一出生就建立在统计学(和概率论)基础之上的,现在大量的人在做这个。而解决的实际问题包括:卫生、环境、行为等等。比如你的每一次点击都部分地决定了Google将要给你投放什么样的广告,你的每一个手机使用行为都部分地决定了苹果下一款手机的开发方向。这里面海量的数据的搜集、统计分析、行为分析,都是以统计学为核心的。

三、就业走向

1、 统计/数据相关:不需要考证

ata analyst -- 统计/BA/数学/以及其他各种想转专业的同学/(本科,硕士,博士均可)

ata scientist -- 统计/数学/计算机/ (倾向硕士,博士多一些)

ata engineer -- 计算机/有相关经验/(本科,硕士,博士均可)

statistician -- 统计/数学 (倾向硕士,博士多一些)

选专业与对应必备软件语言与工作内容概括

ata analyst -- Excel, Tableau, Sql, 可能有SAS或R -- 写分析报告,描述趋势,销量等,占比等

ata scientist -- R, SAS, Python, Sql -- 建预测模型,比如银行根据个人信息历史账单等,建模,决定是否拒绝给申请人开信用卡。也可以数据量很大。

ata engineer -- Haoop, Java/python/scala, Spark, Sql, Hive, Hbase,linux等 -- etl 倒数据,数据量极大,例如上亿条数据。从web server清理提取日志数据,存入非关系型数据库,再用Java或Scala根据业务逻辑写代码。用Hive查询数据。需要很多前后端的知识。有的做推荐系统,或者machine learning

statistician -- SAS, SPSS, Excel -- 方差分析或t检验看几组数据有无差别,得出药效或服务是否有提升


开启美国留学之旅 立即咨询

快速评估适合你的专业&院校

获取验证码
意向国家及地区
立即评估

我已阅读并同意

《隐私保护协议》
更多留学话题
美国录取捷报 美国留学申请攻略 美国留学产品 美国留学专业解析 美国留学职场就业发展 美国留学生活 美国留学时讯 美国签证指导 美国大学排名 美国成功案例
胡春琴
擅长美国
025-85552299
立即咨询
美国留学实用指南
研究生申请
本科申请
高中申请
查专业
看排名
能力提升
推荐产品
  • 美国前30/60名校培养计划
    基于美国特有的转学体制,为学生提供包括学术、领导力、职业等在内的长时段服务,让学生既获得名校录取,又有读完名校的实力
    了解详情
  • 美国高端本科:金鹏计划
    为学生量身搭建五维立体模型,逐一击破痛点,致力于提高美国TOP30本科录取成功率
    了解详情
  • 美国高端硕士:金骏计划
    为志向申请名校的学生提供的高端服务产品 致力于提升学生入读美国前30名校的成功率 产品中涵盖背景提升项目基金,学生可根据自身背景任意选择海内/外科研与职场提升等项目
    了解详情
关闭
专业留学顾问限时 1对1咨询

icon

获取验证码

立即预约
icon icon

我已阅读并同意 《隐私保护协议》

信息提交成功!稍后将有专人与您联系。